- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Jodder, Jaganmoy (2)
-
Zhou, Tinghong (2)
-
Bono, Richard K. (1)
-
Cottrell, Rory D. (1)
-
Davis, William J. (1)
-
Hofmann, Axel (1)
-
Huang, Wentao (1)
-
Ibañez-Mejia, Mauricio (1)
-
Mitra, Gautam (1)
-
Nimmo, Francis (1)
-
Oda, Hirokuni (1)
-
Rayner, Nicole (1)
-
Tarduno, John A. (1)
-
Tarduno, John_A (1)
-
Watkeys, Michael K. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Earth’s magnetic field history can provide insight into why life was able to originate and evolve on our planet, and how habitability has been maintained. The magnetism of minute magnetic inclusions in zircons indicates that the geomagnetic field is at least 4.2 billion years old, corresponding with genetic estimates for the age of the last universal common ancestor. The early establishment of the field would have provided shielding from solar and cosmic radiation, fostering environments for life to develop. The field was also likely important for preserving Earth’s water, essential for life as we know it. Between 3.9 and ca. 3.4 billion years ago, zircon magnetism suggests latitudinal stasis of different ancestral terrains, and stagnant lid tectonics. These data also indicate that the solid Earth was stable with respect to the spin axis, consistent with the absence of plate tectonic driving forces. Moreover, these data point to the existence of low-latitude continental nuclei with equable climate locales that could have supported early life. Near the end of the Precambrian (0.591 to 0.565 billion years ago), the dynamo nearly collapsed, but growth of the inner core during earliest Cambrian times renewed the magnetic field and shielding, helping to prevent drying of the planet. Before this renewal, the ultra-weak magnetic shielding may have had an unexpected effect on evolution. The extremely weak field could have allowed enhanced hydrogen escape to space, leading to increased oxygenation of the atmosphere and oceans. In this way, Earth’s magnetic field may have assisted the radiation of the macroscopic and mobile animals of the Ediacara fauna. Whether the Ediacara fauna are genetically related to modern life is a matter of debate, but if so, magnetospheric control on atmospheric composition may have led to an acceleration in evolution that ultimately resulted in the emergence of intelligent life.more » « less
-
Tarduno, John A.; Cottrell, Rory D.; Bono, Richard K.; Rayner, Nicole; Davis, William J.; Zhou, Tinghong; Nimmo, Francis; Hofmann, Axel; Jodder, Jaganmoy; Ibañez-Mejia, Mauricio; et al (, Nature)Plate tectonics is a fundamental factor in the sustained habitability of Earth, but its time of onset is unknown, with ages ranging from the Hadaean to Proterozoic eons1–3. Plate motion is a key diagnostic to distinguish between plate and stagnant-lid tectonics, but palaeomagnetic tests have been thwarted because the planet’s oldest extant rocks have been metamorphosed and/or deformed4. Herein, we report palaeointensity data from Hadaean-age to Mesoarchaean-age single detrital zircons bearing primary magnetite inclusions from the Barberton Greenstone Belt of South Africa5. These reveal a pattern of palaeointensities from the Eoarchaean (about 3.9 billion years ago (Ga)) to Mesoarchaean (about 3.3 Ga) eras that is nearly identical to that defined by primary magnetizations from the Jack Hills (JH; Western Australia)6,7, further demonstrating the recording fidelity of select detrital zircons. Moreover, palaeofield values are nearly constant between about 3.9 Ga and about 3.4 Ga. This indicates unvarying latitudes, an observation distinct from plate tectonics of the past 600 million years (Myr) but predicted by stagnant-lid convection. If life originated by the Eoarchaean8, and persisted to the occurrence of stromatolites half a billion years later9, it did so when Earth was in a stagnant-lid regime, without plate-tectonics-driven geochemical cycling.more » « less
An official website of the United States government
